

# ERRATA

## ENSEMBLE™ FAMILY E7 SERIES EMBEDDED FUSION PROCESSORS



## Contents

| 1 Silicon Identification and Scope                                             | 3        |
|--------------------------------------------------------------------------------|----------|
| 1.1 System Control Limitations                                                 | 3        |
| 1.1.1 System Control Register Mapping Will Be Different For Production Devices | 3        |
| 1.1.2 EROUTER not functional4                                                  | ļ        |
| 1.1.3 Power Management Is Limited4                                             | ļ        |
| 1.1.4 Limited Clock Frequency Scaling Options for RTSS-HE5                     | 5        |
| 1.2 Secure Enclave Limitations5                                                | 5        |
| 1.2.1 Some Security Features Not Enabled5                                      | 5        |
| 1.3 High-Performance RTSS Limitations $\epsilon$                               | 5        |
| 1.3.1 Limited Number of RTSS-HE Peripherals May Use DMA6                       | 5        |
| 1.4 High-Efficiency RTSS Limitations $\epsilon$                                | 5        |
| 1.4.1 LPI2S Not Functional6                                                    | 5        |
| 1.4.2 LPSPI Not Functional $\epsilon$                                          | 5        |
| 1.4.3 LPI2C Not Functional6                                                    | 5        |
| 1.4.4 LPPDM Not Functional7                                                    | 7        |
| 1.4.5 LPCPI Not Functional7                                                    | 7        |
| 1.4.6 VBATT Domain Power Consumption Reduced In 2 <sup>nd</sup> Sample Silicon | 7        |
| 1.4.7 Limited Number of Peripheral May Use DMA7                                | 7        |
| 1.5 Shared Peripherals Limitations8                                            | 3        |
| 1.5.1 I2C Not Functional                                                       | 3        |
| 1.5.2 PDM Not Functional                                                       | 3        |
| 1.5.4 GPIO Currently Grouped In Blocks 32 I/Os                                 | 3        |
| 1.5.5 Port 0 Pins Are Analog and Not GPIO And Not Available12                  | <u>)</u> |
| 1.5.6 ADC Single-Ended Reference Voltage Not Internally Connected              | 2        |
| 1.5.7 ADC24 Not Functional12                                                   | <u>)</u> |
| 1.5.8 High-Speed Comparator (CMP) Interrupts Are Inverted in A1                | <u>)</u> |
| 1.7 External Memory Expansion Limitations13                                    | 3        |
| 1.7.1 Cannot Extend Internal SRAM Capacity With External OctalSPI SRAM         | 3        |
| Document History                                                               | 3        |



## 1 Silicon Identification and Scope

This document lists the items in the Ensemble E7 Series revision A1 devices that do not match the production device specification as documented in the datasheet.

| Datasheet Reference: | ADTS0005 v1.0                   |
|----------------------|---------------------------------|
| Silicon Versions:    | Ensemble E7 revision A1 Devices |
| Device Marking:      | see photo below                 |

| Device Version | Family Name | Product Identifier | Suffix |
|----------------|-------------|--------------------|--------|
| A1 Silicon     | Ensemble    | AE722xxx           | -A1A1  |

The revision A1 devices are marked with "-A1A1" at the beginning of the next to last row of text on the device below the logo as shown below:



### 1.1 System Control Limitations

#### 1.1.1 System Control Register Mapping Will Be Different For Production Devices

## Datasheet Section Reference: various

#### Description

A1 2<sup>nd</sup> Sample Silicon has different address and I/O maps compared to production devices in these areas:

- Peripherals address map
- Pin-Mux map
- System Control registers address map
- Shared Peripherals Interrupt map
- Peripheral DMA Channels map

Application code that directly addresses any of these registers would need to be changed when migrating from sample silicon to production devices.



#### Workaround for A1 devices

No changes to application code will be necessary when moving to production devices if references and calls to peripherals, I/O pins, and functions are made through CMSIS pack calls.

Address and I/O maps for revision B devices will follow the datasheet specifications.

#### 1.1.2 EROUTER not functional

#### Datasheet Section Reference: 3.13.4 Description

The Event Router (EROUTER) is not functional.

A select number of peripherals can initiate transactions and output events cannot trigger timer functions. The peripherals below are the ones that can initiate DMA transfers.

| Request  | DMA Ch# | Request | DMA Ch# | Request | DMA Ch# | Request | DMA Ch# |
|----------|---------|---------|---------|---------|---------|---------|---------|
| UARTO Rx | 0       | SPIO Rx | 8       | I2C0 Rx | 16      | I2S0 Rx | 24      |
| UART0 Tx | 1       | SPI0 Tx | 9       | 12C0 Tx | 17      | 12S0 Tx | 25      |
| UART1 Rx | 2       | SPI1 Rx | 10      | I2C1 Rx | 18      | I2S1 Rx | 26      |
| UART1 Tx | 3       | SPI1 Tx | 11      | I2C1 Tx | 19      | I2S1 Tx | 27      |
| UART2 Rx | 4       | SPI2 Rx | 12      | I2C2 Rx | 20      | I2S2 Rx | 28      |
| UART2 Tx | 5       | SPI2 Tx | 13      | 12C2 Tx | 21      | 12S2 Tx | 29      |
| UART3 Rx | 6       | SPI3 Rx | 14      | I3C0 Rx | 22      | I2S3 Rx | 30      |
| UART3 Tx | 7       | SPI3 Tx | 15      | I3C0 Tx | 23      | 12S3 Tx | 31      |

#### DMA0 REQ Assignment (Shared Peripherals)

#### Workaround

The EROUTER is functional in revision B devices.

#### 1.1.3 Power Management Is Limited

## Datasheet Section Reference: 3.7

#### Description

Power management is limited to only GO and STOP modes with two power domains. The IDLE, READY, and STANDBY modes are not functional. Not all peripherals may be clock-gated.

#### Workaround

All power modes will be available in revision B devices.



## Datasheet Section Reference: 5.2.3 Description

STOP mode power mode current consumption for STOP\_2 power mode (IDDST2) will exceed 2.5  $\mu\text{A}$ 

Because there are only two power domains in the device and no clock gating, all processors and peripherals are being clocked even if the processors are held in a stopped state. GO power mode 3.3V supply current is approximately 100 mA at room temperature plus 30  $\mu$ A /MHz for the M55\_HP processor and 26  $\mu$ A /MHz for the M55\_HE processor.

#### Workaround

Revision B devices are targeted to have GO power mode power per the datasheet specifications.

#### 1.1.4 Limited Clock Frequency Scaling Options for RTSS-HE

### **Datasheet Section Reference: 3.9**

#### Description

The clock frequency options for the High Efficiency Cortex-M55 CPU in the High-Efficiency Real-Time Processor System (RTSS-HE) are limited to 160 MHz, 120 MHz, or 38.4 MHz.

#### Workaround

Use one of the available frequency options. Revision B devices will have all clock frequency options specified in the datasheet.

## 1.2 Secure Enclave Limitations

#### 1.2.1 Some Security Features Not Enabled

### **Datasheet Section Reference: 3.5**

#### Description

The RTSS-HE CPU has access to these system control registers because firewall protection is not available:

- VTOR registers for CM55-HP & CM55-HE
- Pin-Mux control registers
- Pads Control registers

#### Workaround

Be aware that code written for the RTSS-HE CPU would not be protected from modifying the identified system control registers that are outside of the normal RTSS-HE application domain.

Revision B devices will have all security features specified in the datasheet.



## 1.3 High-Performance RTSS Limitations

#### 1.3.1 Limited Number of RTSS-HE Peripherals May Use DMA

# Datasheet Section Reference: 3.14 Description

The DMA1 controller in the High-Performance Real-Time Subsystem (RTSS-HP) only supports a limited number of the peripherals attached to the M55-HP CPU. The functions supported area shown below.

#### DMA1 Channels Assignment (RTSS-HP)

| Request  | DMA Ch# | Request | DMA Ch# | Request | DMA Ch# | Request | DMA Ch# |
|----------|---------|---------|---------|---------|---------|---------|---------|
| UART4 Rx | 0       | CMP0    | 8       | TIMEROA | 16      | P2_0    | 24      |
| UART4 Tx | 1       | CMP1    | 9       | TIMEROB | 17      | P2_1    | 25      |
| UART5 Rx | 2       | CMP2    | 10      | TIMER1A | 18      | P2_2    | 26      |
| UART5 Tx | 3       | CMP3    | 11      | TIMER1B | 19      | P2_3    | 27      |
| UART6 Rx | 4       | ENCO    | 12      | TIMER2A | 20      | P2_4    | 28      |
| UART6 Tx | 5       | ENC1    | 13      | TIMER2B | 21      | P2_5    | 29      |
| UART7 Rx | 6       | ENC2    | 14      | TIMER3A | 22      | P2_6    | 30      |
| UART7 Tx | 7       | ENC3    | 15      | TIMER3B | 23      | P2_7    | 31      |

DMA channels in GRAY are not implemented in A1 2<sup>nd</sup> Sample Silicon

#### Workaround

In revision B devices, the DMA1 controller supports all peripheral as specified in the datasheet.

## 1.4 High-Efficiency RTSS Limitations

#### 1.4.1 LPI2S Not Functional

#### Datasheet Section Reference: 3.17.4 Description

## The Low-Power Inter-IC Sound (LPI2S) module is not functional.

#### Workaround

Use of the four standard I2S modules. The LPI2S module is functional in revision B devices.

#### 1.4.2 LPSPI Not Functional

**Datasheet Section Reference: 3.17.7 Description** The Low-Power Serial Peripheral Interface (LPSPI) module is not functional.

#### Workaround

Use one of the four standard SPI modules. The LPSPI module is functional in revision B devices.

#### 1.4.3 LPI2C Not Functional

Datasheet Section Reference: 3.17.3 Description The Low-Power Inter-Integrated Circuit (LPI2C) module is not functional.



Workaround

The LPI2C module is functional in revision B devices.

#### 1.4.4 LPPDM Not Functional

#### Datasheet Section Reference: 3.17.6 Description The Low-Power Pulse Density Modulation (LPPDM) module is not functional.

**Workaround** The LPPDM module is functional in revision B devices.

#### 1.4.5 LPCPI Not Functional

**Datasheet Section Reference: 3.20.1 Description** The low-power digital Camera Parallel Interface (LPCPI) module is not functional.

#### Workaround

Use the standard power CPI interface in the Shared Peripherals block. The LPCPI module is functional in revision B devices.

#### 1.4.6 VBATT Domain Power Consumption Reduced In 2<sup>nd</sup> Sample Silicon

# Datasheet Section Reference: 5.2.3 Description

 $V_{BATT}$  domain power consumption is approximately 3  $\mu$ A in 2nd sample silicon. Targeting <1.0  $\mu$ A in production devices.

#### Workaround

None.

#### 1.4.7 Limited Number of Peripheral May Use DMA

#### **Datasheet Section Reference:**

#### Description

The DMA2 controller in the High-Efficiency Real-Time Subsystem (RTSS-HE) only supports a limited number of the peripherals attached to the M55-HE CPU. The functions supported area shown below.

| MAZ Chamicis Assignment (MISS-IL) |         |           |         |         |         |         |         |  |
|-----------------------------------|---------|-----------|---------|---------|---------|---------|---------|--|
| Request                           | DMA Ch# | Request   | DMA Ch# | Request | DMA Ch# | Request | DMA Ch# |  |
| ADC0                              | 0       | LPUART Rx | 8       | PDM0    | 16      | P3_16   | 24      |  |
| ADC1                              | 1       | LPUART Tx | 9       | PDM1    | 17      | P3_17   | 25      |  |
| ADC2                              | 2       | LPTIMERO  | 10      | PDM2    | 18      | P3_18   | 26      |  |
| BOD                               | 3       | LPTIMER1  | 11      | PDM3    | 19      | P3_19   | 27      |  |
| I3C Rx                            | 4       | CAN-FD Rx | 12      | PDM4    | 20      | P3_20   | 28      |  |
| I3C Tx                            | 5       | CAN-FD Tx | 13      | PDM5    | 21      | P3_21   | 29      |  |
| I2C3 Rx                           | 6       | LPSPI Rx  | 14      | PDM6    | 22      | P3_22   | 30      |  |

7

#### DMA2 Channels Assignment (RTSS-HE)



| I2C3 Tx | 7 | LPSPI Tx | 15 | PDM7 | 23 | P3_23 | 31 |
|---------|---|----------|----|------|----|-------|----|
|         |   |          |    |      |    | 1     |    |

DMA channels in GRAY are not implemented in A0 1<sup>st</sup> Sample Silicon or A1 2<sup>nd</sup> Sample Silicon

#### Workaround

In revision B devices, the DMA2 controller supports all peripherals specified in the datasheet.

### 1.5 Shared Peripherals Limitations

### 1.5.1 I2C Not Functional

Datasheet Section Reference: 3.17.3 Description The Inter-Integrated Circuit (I2C) modules are not functional.

**Workaround** The I2C modules are functional in revision B devices.

#### 1.5.2 PDM Not Functional

Datasheet Section Reference: 3.17.6 Description The Pulse Density Modulation (PDM) module is not functional.

#### Workaround

The PDM module is functional in revision B devices.

#### 1.5.4 GPIO Currently Grouped In Blocks 32 I/Os

#### Datasheet Section Reference: 3.16 Description General Purpose I/Os (GPIOs) are currently grouped in blocks of 32 I/Os. The grouping of GPIOs in the A1 sample devices is according to the table below:

A1 Sample Silicon



#### **Table 3-9 GPIO Signal Descriptions**

| Signal Name | Pin Name      | Туре   | Description                                                                          |
|-------------|---------------|--------|--------------------------------------------------------------------------------------|
| GPIO0       | T III TOURING | ., 166 | Beschpion                                                                            |
| P0 0        | P0 0          | 10     | General purpose input/output                                                         |
| P0_1        | P0_1          | 10     | General purpose input/output                                                         |
| P0_2        | PO 2          | 10     | General purpose input/output                                                         |
| P0_3        | P0_3          | ю      | General purpose input/output                                                         |
| P0_4        | P0_4          | 10     | General purpose input/output                                                         |
| P0_5        | P0_5          | ю      | General purpose input/output                                                         |
| P0_6        | P0_6          | ю      | General purpose input/output                                                         |
| P0_7        | P0_7          | 10     | General purpose input/output                                                         |
| P0_8        | P0_8          | ю      | General purpose input/output                                                         |
| P0_9        | P0_9          | ю      | General purpose input/output                                                         |
| P0_10       | P0_10         | IO     | General purpose input/output                                                         |
| P0_11       | P0_11         | ю      | General purpose input/output                                                         |
| P0_12       | P0_12         | ю      | General purpose input/output                                                         |
| P0_13       | P0_13         | ю      | General purpose input/output                                                         |
| P0_14       | P0_14         | ю      | General purpose input/output                                                         |
| P0_15       | P0_15         | ю      | General purpose input/output                                                         |
| P0_16       | P0_16         | 10     | General purpose input/output                                                         |
| P0_17       | P0_17         | ю      | General purpose input/output<br>TSENS output voltage (see 3.22.5 Temperature Sensor) |
| P0_18       | P0_18         | 10     | General purpose input/output                                                         |
| P0_19       | P0_19         | 10     | General purpose input/output                                                         |
| GPIO 1      |               |        |                                                                                      |
| GPIO1_0     | P1_0          | 10     | General purpose input/output                                                         |
| GPIO1_1     | P1_1          | 10     | General purpose input/output                                                         |
| GPIO1_2     | P1_2          | 10     | General purpose input/output                                                         |
| GPIO1_3     | P1_3          | ю      | General purpose input/output                                                         |
| GPIO1_4     | P1_4          | ю      | General purpose input/output                                                         |
| GPIO1_5     | P1_5          | ю      | General purpose input/output                                                         |
| GPIO1_6     | P1_6          | 10     | General purpose input/output                                                         |
| GPIO1_7     | P1_7          | IO     | General purpose input/output                                                         |



| Signal Name | Pin Name   | Туре | Description                  |
|-------------|------------|------|------------------------------|
| GPIO1_8     | P1_8       | 10   | General purpose input/output |
| GPIO1_9     | P1_9       | 10   | General purpose input/output |
| GPIO1_10    | P1_10      | 10   | General purpose input/output |
| GPIO1_11    | P1_11      | 10   | General purpose input/output |
| GPIO1_12    | P1_12      | 10   | General purpose input/output |
| GPIO1_13    | P1_13      | 10   | General purpose input/output |
| GPIO1_14    | P1_14      | 10   | General purpose input/output |
| GPIO1_15    | P1_15      | 10   | General purpose input/output |
| GPIO1_16    | P1_16      | 10   | General purpose input/output |
| GPIO1_17    | P1_17      | 10   | General purpose input/output |
| GPIO1_18    | P1_18      | ю    | General purpose input/output |
| GPIO1_19    | P1_19      | 10   | General purpose input/output |
| GPIO1_20    | P1_20      | 10   | General purpose input/output |
| GPIO1_21    | P1_21      | ю    | General purpose input/output |
| GPIO1_22    | P1_22      | 10   | General purpose input/output |
| GPIO1_23    | P1_23      | 10   | General purpose input/output |
| GPIO1_24    | P1_24      | 10   | General purpose input/output |
| GPIO1_25    | P1_25      | 10   | General purpose input/output |
| GPIO1_26    | P1_26      | 10   | General purpose input/output |
| GPIO1_27    | P1_27      | 10   | General purpose input/output |
| GPIO1_28    | P1_28      | 10   | General purpose input/output |
| GPIO1_29    | P1_29      | ю    | General purpose input/output |
| GPIO1_30    | P1_30      | 10   | General purpose input/output |
| GPIO1_31    | P1_31      | ю    | General purpose input/output |
| GPIO2       | 192<br>192 | 20   |                              |
| GPIO2_0     | P2_0       | 10   | General purpose input/output |
| GPIO2_1     | P2_1       | 10   | General purpose input/output |
| GPIO2_2     | P2_2       | 10   | General purpose input/output |
| GPIO2_3     | P2_3       | 10   | General purpose input/output |
| GPIO2_4     | P2_4       | ю    | General purpose input/output |
| GPIO2_5     | P2_5       | ю    | General purpose input/output |
| GPIO2_6     | P2_6       | 10   | General purpose input/output |
| GPIO2_7     | P2_7       | 10   | General purpose input/output |
| GPIO2_8     | P2_8       | ю    | General purpose input/output |
| GPIO2_9     | P2_9       | ю    | General purpose input/output |
| GPIO2_10    | P2_10      | ю    | General purpose input/output |
| GPIO2_11    | P2_11      | 10   | General purpose input/output |
| GPIO2_12    | P2_12      | ю    | General purpose input/output |
| GPIO2_13    | P2_13      | ю    | General purpose input/output |
| GPIO2_14    | P2_14      | ю    | General purpose input/output |
| GPIO2_15    | P2_15      | 10   | General purpose input/output |
| GPIO2_16    | P2_16      | ю    | General purpose input/output |
| GPIO2_17    | P2_17      | ю    | General purpose input/output |
| GPIO2_18    | P2_18      | 10   | General purpose input/output |
| GPIO2_19    | P2_19      | IO   | General purpose input/output |



| Signal Name | Pin Name | Туре | Description                            |
|-------------|----------|------|----------------------------------------|
| GPIO2_20    | P2_20    | 10   | General purpose input/output           |
| GPIO2_21    | P2_21    | 10   | General purpose input/output           |
| GPIO2_22    | P2_22    | ю    | General purpose input/output           |
| GPIO2_23    | P2_23    | 10   | General purpose input/output           |
| GPIO2_24    | P2_24    | IO   | General purpose input/output           |
| GPIO2_25    | P2_25    | IO   | General purpose input/output           |
| GPIO2_26    | P2_26    | ю    | General purpose input/output           |
| GPIO2_27    | P2_27    | ю    | General purpose input/output           |
| GPIO2_28    | P2_28    | IO   | General purpose input/output           |
| GPIO2_29    | P2_29    | ю    | General purpose input/output           |
| GPIO2_30    | P2_30    | ю    | General purpose input/output           |
| GPIO2_31    | P2_31    | IO   | General purpose input/output           |
| GPIO3       |          |      | 4.                                     |
| GPIO3_0     | P3_0     | ю    | General purpose input/output           |
| GPIO3_1     | P3_1     | IO   | General purpose input/output           |
| GPIO3_2     | P3_2     | IO   | General purpose input/output           |
| GPIO3_3     | P3_3     | IO   | General purpose input/output           |
| GPIO3_4     | P3_4     | ю    | General purpose input/output           |
| GPIO3_5     | P3_5     | ю    | General purpose input/output           |
| GPIO3_6     | P3_6     | ю    | General purpose input/output           |
| GPIO3_7     | P3_7     | ю    | General purpose input/output           |
| GPIO3_8     | P3_8     | ю    | General purpose input/output           |
| GPIO3_9     | P3_9     | ю    | General purpose input/output           |
| GPIO3_10    | P3_10    | ю    | General purpose input/output           |
| GPIO3_11    | P3_11    | ю    | General purpose input/output           |
| GPIO3_12    | P3_12    | IO   | General purpose input/output           |
| GPIO3_13    | P3_13    | ю    | General purpose input/output           |
| GPIO3_14    | P3_14    | ю    | General purpose input/output           |
| GPIO3_15    | P3_15    | ю    | General purpose input/output           |
| GPIO3_16    | P3_16    | IO   | General purpose input/output           |
| GPIO3_17    | P3_17    | ю    | General purpose input/output           |
| GPIO3_18    | P3_18    | ю    | General purpose input/output           |
| GPIO3_19    | P3_19    | IO   | General purpose input/output           |
| GPIO3_20    | P3_20    | ю    | General purpose input/output           |
| GPIO3_21    | P3_21    | ю    | General purpose input/output           |
| GPIO3_22    | P3_22    | ю    | General purpose input/output           |
| GPIO3_23    | P3_23    | ю    | General purpose input/output           |
| LPGPIO      |          |      |                                        |
| LPGPIO_0    | P4_0     | ю    | Low power general purpose input/output |
| LPGPIO_1    | P4_1     | ю    | Low power general purpose input/output |
| LPGPIO_2    | P4_2     | ю    | Low power general purpose input/output |
| LPGPIO_3    | P4_3     | ю    | Low power general purpose input/output |
| LPGPIO_4    | P4_4     | ю    | Low power general purpose input/output |
| LPGPIO_5    | P4_5     | ю    | Low power general purpose input/output |
| LPGPIO_6    | P4_6     | IO   | Low power general purpose input/output |

| Signal Name | Pin Name | Туре | Description                            |
|-------------|----------|------|----------------------------------------|
| LPGPIO_7    | P4_7     | 10   | Low power general purpose input/output |

#### Workaround

Revision B devices will have GPIOs grouped is blocks of 8 I/Os as specified in the datasheet.



### 1.5.5 Port 0 Pins Are Analog and Not GPIO And Not Available

#### Datasheet Section Reference: 3.16

#### Description

Port 0 pins, designated as P0\_[0:19] in group GPIO0 in the A0/A1 table 3-9 shown above are solely analog I/Os and cannot be used as General-Purpose I/Os.

#### Workaround

If GPIOs are needed, use other GPIO pins on other ports. In revision B devices, pins in signal groups GPIO0, GPIO1, and GPIO2 can be used as General-Purpose I/Os or analog I/Os as specified in the datasheet.

#### 1.5.6 ADC Single-Ended Reference Voltage Not Internally Connected

# Datasheet Section Reference: 3.20.1 Description

The internal connection of the ADC reference to ground for single-ended input mode is not present in A1 devices.

#### Workaround

For A1 devices, the negative input to the ADC (INM) should be tied to ground. This will be fixed in revision B devices.

#### 1.5.7 ADC24 Not Functional

#### Datasheet Section Reference: 3.20.1

Description

The 24-bit ADC24 module is not functional in A1 devices.

#### Workaround

Use ADC12 modules for revision A1 designs. The ADC24 module will be fixed in revision B devices.

#### 1.5.8 High-Speed Comparator (CMP) Interrupts Are Inverted in A1

#### Datasheet Section Reference: 3.20.3 Description

With CMP polarity inversion bit cleared, interrupts are normally generated from the CMP block when Input A > Input B. Polarity inversion can then be enabled to generate another interrupt when Input B > Input A. However, in revision A1 devices the comparator output is inverted.

#### Workaround

The comparator polarity inversion bit should be enabled in the CMP before enabling interrupts in A1 devices. This will result in an interrupt being generated when Input A > Input B. The interrupt service routine (ISR) can then clear the polarity inversion bit to allow another interrupt to be generated when Input A < Input B. This limitation is fixed in revision B devices.



## 1.7 External Memory Expansion Limitations

#### 1.7.1 Cannot Extend Internal SRAM Capacity With External OctalSPI SRAM

# Datasheet Section Reference: 3.11.3 Description

CPUs and bus masters cannot use external OctalSPI SRAM to extend internal SRAM capacity.

#### Workaround

Revision B devices can use OctalSPI SRAM to extend internal SRAM as specified in the datasheet.

## Document History

| Version | Change Log                                                     |
|---------|----------------------------------------------------------------|
| 1.3     | Pre-release                                                    |
| 1.4     | Added information on ADC and COMP behavior                     |
| 1.5     | Added note that ADC24 is not functional in Revision A1 devices |